Super-algebras-Impact-factor

Super-algebras-Impact-factor

A superring, or Z2-graded ring, is a superalgebra over the ring of integers Z. The elements of each of the Ai are said to be homogeneous. The parity of a homogeneous element x, denoted by |x|, is 0 or 1 according to whether it is in A0 or A1. Elements of parity 0 are said to be even and those of parity 1 to be odd. If x and y are both homogeneous then so is the product xy and {displaystyle |xy|=|x|+|y|}{displaystyle |xy|=|x|+|y|}. An associative superalgebra is one whose multiplication is associative and a unital superalgebra is one with a multiplicative identity element. The identity element in a unital superalgebra is necessarily even. Unless otherwise specified, all superalgebras in this article are assumed to be associative and unital. A commutative superalgebra (or supercommutative algebra) is one which satisfies a graded version of commutativity. Specifically, A is commutative if{displaystyle yx=(-1)^{|x||y|}xy,}yx=(-1)^{{|x||y|}}xy, for all homogeneous elements x and y of A. There are superalgebras that are commutative in the ordinary sense, but not in the superalgebra sense. For this reason, commutative superalgebras are often called supercommutative in order to avoid confusion.

 


Last Updated on: Nov 27, 2024

Global Scientific Words in General Science