Neural precursor cells. By definition, a stem cell has the capacity to self-renew indefinitely and the ability to give rise to cells that generate differentiated progeny. A neural stem cell generates multipotent progeny which can differentiate into neurons, astrocytes, and oligodendrocytes.Neural stem cell, largely undifferentiated cell originating in the central nervous system. Neural stem cells (NSCs) have the potential to give rise to offspring cells that grow and differentiate into neurons and glial cells (non-neuronal cells that insulate neurons and enhance the speed at which neurons send signals).
The astonishing progress in the field of stem cell biology during the past 40 years has transformed both science and medicine. Neural stem cells (NSCs) are the stem cells of the nervous system. During development they give rise to the entire nervous system.Precursor cells are stem cells that have developed to the stage where they are committed to forming a particular type of new blood cell. By dividing and differentiating, precursor cells give rise to the four major blood cell lineages: red cells, phagocytic cells, megakaryocytesNeural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. ... Stem cells are characterized by their capacity to differentiate into multiple cell types.