Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by β-glucuronidase (GUSB) deficiency. Intravenous injection of a retroviral vector expressing canine GUSB into neonatal MPS VII mice resulted in transduction of 6 to 35% of hepatocytes, which secreted GUSB into blood. Serum GUSB activity was stable for 6 months at 600 (low expression) to 10,000 (high expression) U/ml, and enzyme was modified appropriately with mannose 6-phosphate. The average serum GUSB activity (3531 U/ml) is the highest long-term expression reported for MPS VII mice after gene therapy. Secreted enzyme was taken up by other tissues, as the average enzyme activity was >13% of normal in somatic organs and 2% of normal in brain. Low expression markedly reduced histopathological evidence of lysosomal storage in liver, spleen, kidney, small intestine, neurons, and glial cells. High expression appeared to be more effective than low expression at reducing lysosomal storage in aorta, heart valves, thymus, bronchial epithelium, cornea, and retinal pigmented epithelium. Future experiments will determine if greater pathological improvements will consistently be observed in retrovirus-treated MPS VII mice with higher serum GUSB activity relative to animals with lower activity and if these result in clinical benefits. Mucopolysaccharidosis I (MPS I) due to deficient α-l-iduronidase (IDUA) activity results in accumulation of glycosaminoglycans in many cells. Gene therapy could program liver to secrete enzyme with mannose 6-phosphate (M6P), and enzyme in blood could be taken up by other cells via the M6P receptor. Newborn MPS I mice were injected with 109 (high dose) or 108 (low dose) transducing units/kg of a retroviral vector (RV) expressing canine IDUA. Most animals achieved stable expression of IDUA in serum at 1240 ± 147 and 110 ± 31 units/ml, respectively.