Jordan Pairs

Jordan Pairs

The most important examples are Lie triple systems and Jordan triple systems. They were introduced by Nathan Jacobson in 1949 to study subspaces of associative algebras closed under triple commutators [[u, v], w] and triple anticommutators {u, {v, w}}. In particular, any Lie algebra defines a Lie triple system and any Jordan algebra defines a Jordan triple system. They are important in the theories of symmetric spaces, particularly Hermitian symmetric spaces and their generalizations.which in the positive definite case is a Cartan involution. The corresponding symmetric space is a symmetric R-space. It has a noncompact dual given by replacing the Cartan involution by its composite with the involution equal to +1 on g0 and −1 on V and V*. A special case of this construction arises when g0 preserves a complex structure on V. In this case we obtain dual Hermitian symmetric spaces of compact and noncompact type,

A Jordan pair is a generalization of a Jordan triple system involving two vector spaces V+ and V−. The trilinear map is then replaced by a pair of trilinear maps

{displaystyle {cdot ,cdot ,cdot }_{+}colon V_{-} imes S^{2}V_{+} o V_{+}} {displaystyle {cdot ,cdot ,cdot }_{-}colon V_{+} imes S^{2}V_{-} o V_{-}}


Last Updated on: Nov 28, 2024

Global Scientific Words in General Science