Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to transform the level at which we understand biology. Systems are defined and abstracted at different levels, which are simulated and analysed using different types of mathematical and computational techniques. Insights obtained from systems level studies readily lend to their use in several applications in biotechnology and drug discovery, making it even more important to study systems as a whole. Systems biology is the research endeavor that provides the scientific foundation for successful synthetic biology. It is based on the comprehensive study of the molecular diversity of living systems, both natural and synthetic, the identification of simplifying general principles and patterns that are recurring features in living and engineered systems, and the integration of our biological knowledge in complex models of the regulatory networks that characterize life. In this way, systems biology will not only be a fascinating high-performance version of natural history, but can indeed be considered the “culmination of biology”