Energy is required for the normal functioning of the organs in the body. Many tissues can also use fat or protein as an energy source but others, such as the brain and red blood cells, can only use glucose.
Glucose is stored in the body as glycogen. The liver is an important storage site for glycogen. Glycogen is mobilized and converted to glucose by gluconeogenesis when the blood glucose concentration is low. Glucose may also be produced from non-carbohydrate precursors, such as pyruvate, amino acids and glycerol, by gluconeogenesis. It is gluconeogenesis that maintains blood glucose concentrations, for example during starvation and intense exercise.
Insulin and glucagon are potent regulators of glucose metabolism. For decades, we have viewed diabetes from a bi-hormonal perspective of glucose regulation. This perspective is incomplete and inadequate in explaining some of the difficulties that patients and practitioners face when attempting to tightly control blood glucose concentrations. Intensively managing diabetes with insulin is fraught with frustration and risk. Despite our best efforts, glucose fluctuations are unpredictable, and hypoglycemia and weight gain are common. These challenges may be a result of deficiencies or abnormalities in other glucoregulatory hormones. New understanding of the roles of other pancreatic and incretin hormones has led to a multi-hormonal view of glucose homeostasis.
The pancreas has both endocrine and exocrine functions. The endocrine tissue is grouped together in the islets of Langerhans and consists of four different cell types each with its own function. Alpha cells produce glucagon. Beta cells produce proinsulin. Proinsulin is the inactive form of insulin that is converted to insulin in the circulation. Delta cells produce somatostatin. F or PP cells produce pancreatic polypeptide.