A biointerface is the region of contact between a biomolecule, cell, biological tissue or living organism or organic material considered living with another biomaterial or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of biology, biotechnology, diagnostics, and medicine. Biointerface science is a multidisciplinary field in which (bio)chemists who synthesize novel classes of biomolecules (PNA, peptidomimetics, aptamers, ribozymes, and engineered proteins) cooperate with scientists who have developed the tools to position biomolecules with molecular precision (proximal probe methods, nano-and micro contact methods, e-beam and X-ray lithography, and bottom up self-assembly methods), scientists who have developed new spectroscopic techniques to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices. Nanotechnology is a rapidly growing field that has allowed for the creation of many different possibilities for creating biointerfaces. Nanostructures that are commonly used for biointerfaces include: metal nanomaterials such as gold and silver nanoparticles, semiconductor materials like silicon nanowires, carbon nanomaterials, and nanoporous materials