One of the dose prediction methods is incorporating historical treatment planning data into algorithms to estimate the dose–volume histogram (DVH) of organ for new patients. Although DVH is used extensively in treatment plan quality and radiotherapy prognosis evaluation, three-dimensional dose distribution can describe the radiation effects more explicitly. The purpose of this retrospective study was to predict the dose distribution of breast cancer radiotherapy by means of deformable registration into atlas images with historical treatment planning data that were considered to achieve expert level. The atlas cohort comprised 20 patients with left-sided breast cancer, previously treated by volumetric-modulated arc radiotherapy. The registration-based prediction technique was applied to 20 patients outside the atlas cohort. This study evaluated and compared three different approaches: registration to the most similar image from a dataset of individual atlas images (SIM), registration to all images from a database of individual atlas images with the average method (WEI_A), and the weighted method (WEI_F). The dose prediction performance of each strategy was quantified using nine metrics, including the region of interest dose error, 80% and 100% prescription area dice similarity coefficients (DSCs), and γ metrics.