Perfection in Automation; Technologies; Safety technology; Safety technology . 5 good reasons to choose integrated safety from B&R . Today's safety technology actively supports a machine's functionality while simultaneously safeguarding it against hazards. It adapts to changing configurations and works reliably anywhere in the world. No longer limited to a single machine, today's safety.
Many of today’s legacy manufacturing systems were developed with a either a blind eye or a minimalist approach to safety. Older technology usually forced machines to come to a full stop and be in a “safe state” before repair or maintenance work could be performed. Because this downtime decreased productivity, personnel often bypassed safety equipment, a hazardous condition, to say the least.
Fortunately, new global standards, technological innovations and well-defined risk-management tactics have helped minimize these issues. When deployed properly catwith what we call a “holistic” approach, safetyautomation systems can provide a safer workplace, boost productivity and reduce environmental impact.
Functional standards
New safety standards, commonly referred to as functional standards, improve the way that safety equipment is designed. Historically prescriptive in nature, safety standards provide a guide on how to design control systems to help ensure safety requirements are met. Older standards used redundancy, diversity, and diagnostic principles. But one important element was missing — time. The new functional safety approach to global standards adds a time element — known as the Probability of Dangerous Failure, and its inverse, the Mean Time to Dangerous Failure — to build on the existing safety structure approach. The time element adds a confidence factor that the safety system will perform properly today and tomorrow.
Standards ISO13849-1:2006 and IEC62061:2005 apply the time element for the machinery sector. ISO13849-1:2006 builds on the “categories” of safety structure, while IEC62061:2005 builds on the structure’s foundation, or the “hardware fault tolerance.” Diagnostics, a historical element, is also included. The three elements combined yield a time-sensitive level of integrity in a safety system.