Access to high-throughput genome sequencing methods also underlies the ambition to sequence no fewer than 100 solanaceous species as part of the international SOL project, as reported by Rene Klein Langhorst (Centre for Biosystems Genomics, Wageningen, The Netherlands). This group of plants accounts for a huge range of economically important species, including tobacco, coffee, many vegetables and a vast range of untapped plants. Ian Bancroft (John Innes Centre, Norwich, UK) described the international effort to sequence a Brassica genome, and some initial findings from comparative genomics. A collaboration involving Korea, Australia, China and the UK will sequence Brassica rapa (the turnip and Chinese cabbage family of crops). This will also throw some light on the genome of B. napus (oilseed rape) as the AA genome of B. napus (which is a tetraploid denoted AACC) comes from B. rapa. Despite their close evolutionary relationship to the reference Arabidopsis thaliana genome, Brassica genomes are exceptionally complex, as two rounds of genome duplication since their last common ancestor with Arabidopsis, followed by diploidization and hybridization events, have led to extensive gene loss, chromosome rearrangements and additional segmental duplications