Affinity chromatography is a method of separating biochemical mixture based on a highly specific interaction between antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid. It is a type of chromatographic laboratory technique used for purifying biological molecules within a mixture by exploiting molecular properties, e.g. protein can be eluted by ligand solution. Biological macromolecules, such as enzymes and other proteins, interact with other molecules with high specificity through several different types of bonds and interaction. Such interactions include hydrogen bonding, ionic interaction, disulfide bridges, hydrophobic interaction, and more. The high selectivity of affinity chromatography is caused by allowing the desired molecule to interact with the stationary phase and be bound within the column in order to be separated from the undesired material which will not interact and elute first.The molecules no longer needed are first washed away with a buffer while the desired proteins are let go in the presence of the eluting solvent (of higher salt concentration). This process creates a competitive interaction between the desired protein and the immobilized stationary molecules, which eventually lets the now highly purified proteins be released. Affinity chromatography can be used to purify and concentrate a substance from a mixture into a buffering solution, reduce the amount of unwanted substances in a mixture, identify the biological compounds binding to a particular substance, purify and concentrate an enzyme solution. The molecule of interest can be immobilized through covalent bonds. This occurs through an insoluble matrix such as chromatographic medium like cellulose or polyacrylamide. When the medium is bound to the protein of interest it becomes immobilized.