I have carried out research in this topic in collaboration with Dr. J. Güémez (from the Universidad de Cantabria). We introduced a new method that works by applying perturbations to the variables of the chaotic system. These perturbations can yield a transition of the system to regular behavior, if the parameters are judiciously chosen. The following papers contain our results in this field: J. Güémez and M.A. Matías, Control of chaos in unidimensional maps, Physics Letters A 181, 29-32 (1993). M.A. Matías and J. Güémez, Stabilization of chaos by proportional pulses in the system variables, Physical Review Letters, 72, 1455-1458 (1994). J. Güémez, J.M. Gutiérrez, A. Iglesias, and M.A. Matías, Stabilization of periodic and quasiperiodic motion in chaotic systems through changes in the system variables, Physics Letters A, 190, 429-433 (1994). J. Güémez, J.M. Gutiérrez, A. Iglesias, and M.A. Matías, Suppression of chaos through changes in the system variables: transient chaos and crises, Physica D, 79, 164-173 (1994). M.A. Matías and J. Güémez, Chaos suppression in flows using proportional pulses in the system variables, Physical Review E, 54, 198-209 (1996). J.M. Gutiérrez, A. Iglesias, J. Güémez, and M.A. Matías, Suppression of chaos through changes in the system variables through Poincaré and Lorenz maps, International Journal of Bifurcation and Chaos, 6, 1351-1362 (1996). A. Iglesias, J.M. Gutiérrez, J. Güémez, and M.A. Matías, Chaos Suppression through changes in the system variables and numerical rounding errors, Chaos, Solitons, and Fractals 7, 1305-1316 (1996).
Biotechnology, Genetics