Gregg Duester

professor
Neuroscience and Aging Research Center
Sanford-Burnham Medical Research Institute
United States of America

Professor Genetics
Biography

Gregg Duester earned his Ph.D. in Microbiology from the Medical College of Virginia in Richmond in 1982. He received postdoctoral training at the University of California at Irvine and worked as Assistant Research Professor at that institution. Dr. Duester was appointed Assistant Professor in the Department of Biochemistry at Colorado State University at Fort Collins; he was recruited to Sanford Burnham Prebys Medical Discovery Institute in 1991.

Research Intrest

Dr. Duester investigates the genetic regulatory mechanisms controlled by retinoic acid during embryonic development. His laboratory was instrumental in identifying enzymes that allow specific cells to metabolize the nutrient vitamin A (retinol) into an active form, retinoic acid, a potent regulator of gene expression. The tissue-specific location and timing of retinoic acid production during embryogenesis provides intercellular signaling information needed to regulate generation of tissues and organs from stem cells. Dr. Duester has found that mice carrying mutations in Raldh1, Raldh2, Raldh3, and Rdh10 fail to generate retinoic acid in specific regions of the embryo, resulting in defective differentiation of stem cells needed to form the brain/spinal cord, vertebrae, forelimbs, and heart. His laboratory uses knockout mouse genetic models to understand what developmental pathways and genes are regulated by retinoic acid during organogenesis, a process that is very similar in humans and mice. By determining how retinoic acid normally functions as a central regulator of stem cells during organogenesis, his research helps reveal the regulatory logic that drives stem cell differentiation and provides a basis to guide efforts in stem cell manipulations designed to treat human disease or aging through a regenerative medicine approach.